LITERATURE CITED

- 1. M. A. Gal'bershtam, N. M. Przhiyalgovskaya, I. B. Lazarenko, V. S. Kononova, and N. N. Suvorov, Khim. Geterotsikl. Soedin., No. 4, 497 (1976).
- 2. O. Diels, Berichte., 34(2), 1758 (1901).
- 3. A. N. Kost (ed.), General Laboratory Course in Organic Chemistry [in Russian], Moscow (1965), p. 512.
- 4. G. G. Arcus and M. M. Coombs, J. Chem. Soc., No. 11, 3977 (1954).
- 5. N. M. Gulliwane, C. G. Davies, and G. J. Davies, J. Chem. Soc., No. 10, 1435 (1936).
- 6. H. Grilman and S. Avakian, J. Am. Chem. Soc., <u>68</u>, 1514 (1946).
- 7. G. Schroeter, Annalen, 426, 17 (1922).
- 8. M. A. Gal'bershtam, N. M. Przhiyalgovskaya, O. R. Khrolova, I. V. Manakova, G. K. Bobyleva, and N. N. Suvorov, Khim. Geterotsikl. Soedin., No. 8, 1069 (1977).
- 9. M. A. Gal'bershtam, N. M. Przhiyalgovskaya, I. B. Lazarenko, G. K. Bobyleva, Yu. B. Pod'yachev, and N. N. Suvorov, Khim. Geterotsikl. Soedin., No. 11, 1482 (1984).
- 10. M. A. Gal'bershtam, O. R. Khrolova, Yu. B. Pod'yachev, N. P. Samoilova, G. K. Bobyleva, V. N. Bulganov, and Yu. V. Zasukhin, Khim. Vys. Énerg., 13, 230 (1979).
- M. A. Gal'bershtam, V. M. Pantsyrnyi, and N. A. Donskaya, Kinet. Katal., <u>12</u>, 1047 (1971).
- 12. M. Mensherger and E. R. Shaw, J. Org. Chem., 21, 394 (1956).

SULFUR-CONTAINING DERIVATIVES OF FIVE-MEMBERED CYCLIC SULFONES.

2.* INTRAMOLECULAR CYCLIZATION OF ISOTHIOUREIDOTHIOLENE

1,1-DIOXIDE SALTS

Yu. V. Bezuglyi, A. A. Tukhar', T. É. Bezmenova, UDC 547.789.6.07:543.422.25
V. P. Foremnaya, A. G. Bratunets, and
A. M. Shakhvorost

cis-2-Imino-4,6,7,8-tetrahydrothieno[3,4-d]thiazole 5,5-dioxides were obtained by intramolecular cyclization of 4-isothioureido-2-thiolene 1,1-dioxide salts. The reaction of N-substituted thioureas with 4-bromo-2-thiolene 1,1-dioxide leads to 3-substituted cis-2-imino-4,6,7,8-tetrahydrothieno[3,4-d]thiazole 5,5-dioxides.

Compounds that contain a thiazolidine ring are of interest as diuretics, CNS stimulators [2], and substances that have anti-inflammatory activity [3]. We have previously reported [1, 4] the synthesis of isothioureidothiolene 1,1-dioxide salts. In a continuation of our research we studied the possibility of the use of these salts to obtain condensed two-ring systems that contain thiazolidine and thiolane 1,1-dioxide rings.

We established that 4-isothioureido-2-thiolene 1,1-dioxide hydrobromides Ia, b in aqueous solutions in the presence of sodium bicarbonate form products of intramolecular cyclization - cis-2-imino-4,6,7,8-tetrahydrothieno[3,4-d]thiazole 5,5-dioxides IIa, b.

Other isothioureidothiolene 1,1-dioxide salts [1] do not undergo this sort of transformation under these conditions. Considering the fact of the formation of salts Ia, b from thiourea and 4-bromo-2-thiolene 1,1-dioxides [1, 4], as well as the ability of these salts to undergo intramolecular cyclization, we investigated the reaction of 4-bromo-2-thiolene

*See [1] for Communication 1. †Deceased.

Institute of Physical-Organic Chemistry and Coal Chemistry, Academy of Sciences of the Ukrainian SSR, Kiev 252160. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 110-113, January, 1988. Original article submitted July 8, 1986; revision submitted January 23, 1987.

TABLE 1. Conditions for Obtaining the Synthesized Compounds and Their Characteristics

Compound	mp,*	Reaction condi- tions		Found, %				Calc., %			
		solvent vol., ml	time, h	Cl (Br)	N	S	Empirical formula	Cl(Br)	N	S	Yield, %
IIb IIa Va Vb Vc Vd VI VI VI VI VI VI IIIa	196—197 289—290 218—219 257—258 301—302 257—258 229—231 210—212 180—183 201—204 266—267 195—196 210—212	20 30 50 40 40 40 50 50 50 50	1 2 2 2 2 4 3 10 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(27,6) (25,8) (22,3) (37,7) 16,9 (19,1) 23,1 (17,4) — — — — — — — — — — — — — — — — — — —	13,4 15,0 9,4 9,3 — 6,6 6,2 11,7 10,6 8,8 — 7,5 6,5 11,8	31,1 33,2 21,9 20,5 18,1 14,9 15,0 14,3 25,9 23,5 20,2 16,1 17,1 15,6 27,8	C ₆ H ₁₀ N ₂ O ₂ S ₂ C ₆ H ₁₀ N ₂ O ₂ S ₂ C ₆ H ₁₀ N ₂ O ₂ S ₂ ·HBr C ₆ H ₁₂ N ₂ O ₂ S ₂ ·HBr C ₁₂ H ₁₄ N ₂ O ₂ S ₂ ·HBr C ₁₁ H ₁₁ BrN ₂ O ₂ S ₂ ·HBr C ₁₁ H ₁₀ Cl ₂ N ₂ O ₂ S ₂ ·HBr C ₁₁ H ₉ Cl ₃ N ₂ O ₂ S ₂ ·HBr C ₆ H ₁₂ N ₂ O ₃ S ₂ C ₁₀ H ₁₄ N ₂ O ₃ S ₂ C ₁₄ H ₁₆ N ₂ O ₃ S ₂ C ₁₃ H ₁₃ BrN ₂ O ₃ S ₂ C ₁₃ H ₁₁ Cl ₃ N ₂ O ₃ S ₂ C ₁₃ H ₁₁ Cl ₃ N ₂ O ₃ S ₂ C ₁₃ H ₁₁ Cl ₃ N ₂ O ₃ S ₂ C ₇ H ₁₀ N ₂ O ₃ S ₂ C ₇ H ₁₀ N ₂ O ₃ S ₂	(27.9) (25.5) (22.0) (37.3) 17.0 (19.1) 23.5 (17.7) 10.2 8,6 - 7,4 6,8 12,0	13,6 14,6 9,8 8,9 6.7 6,2 11,3 23,4 19,8 16,5 16,5 15,5 27,4	31.1 33.3 22.3 20.4 17.7 15.0 15.3 14.1 25.8 — (20.5) 18.7 25.7	14 56 74 81 66 81 55 73 80 36 69 53 65 79 73

*The compounds were crystallized: IIb and VIa, c, e, f from ethanol, IIa and Va from ethanol—water (1:1), Vb-f and VIb from water, VId from CH $_3$ COOH, and IIIa from DMF.

1,1-dioxide (IV) with N-substituted thioureas in order to obtain two-ring thiazolidines in one step. We established that the reaction of such thioureas with sulfone IV in isopropyl alcohol at 80°C for 2-12 h leads to cis-2-imino-3-alkyl(aryl)-4,6,7,8-tetrahydrothieno[3,4-d]-thiazole 5,5-dioxide hydrobromides Va-f. We assumed cis fusion of the thiolane 1,1-dioxide and thiazolidine rings in IIa, b and Va-f on the basis of data on the intramolecular cyclization reactions of derivatives of thiolene 1,1-dioxides [5, 6].

I-III a R=H; b R=CH₃

Compounds Va-f are readily acylated by acetic anhydride in water in the presence of sodium acetate to give 3-substituted cis-2-acylimino-4,6,7,8-tetrahydrothieno[3,4-d]thiazole 5,5-dioxides VIa-f, while base IIa reacts with acetic anhydride in the absence of sodium acetate to give the corresponding mono-2-acylimino derivative IIIa.

V, VI a $R=CH_3$; b $R=CH_2CH=CH_2$; c $R=CH_2C_6H_5$; d $R=p\text{-Br}C_6H_4$; e $R=2,6\text{-}Cl_2C_6H_3$; f $R=2,4,6\text{-}Cl_3C_6H_2$

The characteristics of the synthesized compounds are presented in Tables 1 and 2. To establish the structures of IIa, b, Va-f, and VIa-f we investigated their IR and 13 C NMR spectra (Table 2). In the IR spectra of Va-f a band of the stretching vibrations of the C=N bond is observed at 1640-1650 cm⁻¹; this is characteristic for thiazolidines that have an exocyclic azomethine bond [7]. The absorption frequencies of the stretching vibrations of the C=O bond observed in the spectra of acyl derivatives VIa-f at 1610-1650 cm⁻¹ are characteristic for acylimines [8], and the location of the band of the stretching vibrations of

TABLE 2. Spectral Characteristics of the Synthesized Compounds*

Com-	1	I	R spectrum,	13 C NMR spectrum, δ, ppm					
pound	vc=n	ν _{C=0}	ν 50₂	$\nu_{\Rightarrow N-H}$ (ν_{N-H})	δ _{=N−Н}	C ₍₈₎ , d	C ₍₇₎ , d	Δδ	
Пъ	1640	_	1110, 1290	3440 (3300)	1590	80.4**	54,5	25,9	
Ila	1650	-	1140, 1280	3430 (3310)	1600	72,4	49,0	23,4	
٧a	1640	-	1115, 1310	3280	1590	66,2	39,5	26,7	
٧b	1640] —	1100, 1310	3380	1590	68,6	42,7	25,9	
Vс	1650		1115, 1315	3370	1600	68,2	42,8	25,4	
Vd	1650	-	1135, 1305	3320	1575	69,8	42,0	27,8	
V,ę	1640		1130, 1310	3320	1565	69,1	44,4	24,7	
٧£	1650	_	1130, 1300	3420	1555	71,1	46,8	24,3	
Vla	1540	1610	1125, 1300	_	- Calescone	62,0	39,4	22,6	
VIЪ	1520	1620	1110, 1305			66,2	42,3	23,9	
VIc	1535	1615	1120, 1310	_		67,3	42,2	25,1	
VΙđ	1500	1630	1110, 1300	_		68,3	41,9	26,4	
Vle	1520	1650	1130, 1290	-		67,2	43,7	23,5	
VIŧ	1540	1640	1120, 1290	-	_	68,7	43,8	24,9	
IIIa	1520	1660	1130, 1330	-		69.6	42,2	27,4	

*Solvents: CH_3 OD for IIa, b, D_2 O for Va and VIa, and CF_3 COOH with the addition of 5% (by volume) d_6 -acetone for Vb-f, VIb-f, and IIIa.

the C=N bond at 1500-1540 cm⁻¹ constitutes evidence for the existence of conjugation between the C=O and C=N groups [9]. These data make it possible to conclude that 2-imino(acylimino)-thiazolidine rings are present in V and VIa-f; this is possible only when substituent R is attached to the endocyclic nitrogen atom. In contrast to thiazolidines Va-f and VIa-f, the imino structure of which is fixed by radical R, two tautomeric forms — aminothiazoline and iminothiazolidine — may be realized for two-ring systems IIa, b and IIIa. To establish the structures of these compounds we compared their ¹³C NMR spectra with the spectra of two-ring systems V and VIa-f, which have an imino structure. We found that the differences in the chemical shifts of the signals of the carbon atoms that belong simultaneously to the thiolane 1,1-dioxide and thiazolidine rings are found in the same range for IIa, b and IIIa (23.4-27.4 ppm) and Va-f and VIa-f (22.6-27.8 ppm). This indicates the identical character of the structures of the two-ring systems described; this constitutes evidence for the realization of a 2-iminothiazolidine structure in products IIa, b and IIIa. The IR spectral data (Table 2) also confirm this assumption.

EXPERIMENTAL

The IR spectra of KBr pellets of the compounds were recorded with a UR-20 spectrometer. The ^{13}C NMR spectra were obtained with a Bruker CXP-200 spectrometer (50 MHz) under pulse conditions with subsequent Fourier transformation; the external standard was tetramethylsilane, and the resonance conditions were stabilized with respect to the ^2H nuclei of the solvent of ^4G -acetone, which was added to solutions of the samples in trifluoroacetic acid.

cis-2-Imino-4,6,7-trihydrothieno-8-methyl[3,4-d]thiazole 5,5-Dioxide (IIb). A mixture of 2.87 g (0.01 mole) of salt Ib, 0.84 g (0.01 mole) of sodium bicarbonate, and 30 ml of water was stirred for 1 h at 70°C, after which the solution was evaporated to dryness in the vacuum created by a water aspirator, and the residue was recrystallized with hot filtration. The yield was 0.3 g.

 $\frac{\text{cis-2-Imino-4,6,7,8-tetrahydrothieno[3,4-d]thiazole 5,5-Dioxide (IIa)}}{\text{g (0.01 mole) of salt Ia, 0.84 g (0.01 mole) of sodium bicarbonate, and 30 ml of water was stirred for 2 h at 20°C. The precipitated IIa was removed by filtration and recrystallized. The yield was 1.03 g.$

 $\frac{\text{cis-2-Imino-3-methyl-4,6,7,8-tetrahydrothieno[3,4-d]thiazole 5,5-Dioxide Hydrobromide}{\text{(Va)}}. \text{ A mixture of 1.97 g (0.01 mole) of sulfone IV, 0.9 g (0.01 mole) of N-methylthiourea, and 20 ml of isopropyl alcohol was heated at 80°C for 2 h, after which it was cooled to 20°C, and the resulting precipitate was removed by filtration and crystallized to give 2.14 g of hydrobromide Va.}$

3-Substituted cis-2-Imino-4,6,7,8-tetrahydrothieno[3,4-d]thiazole 5,5-Dioxide Hydro-bromides Vb-f (Table 1). These compounds were similarly obtained from sulfone IV and the corresponding substituted thioureas.

^{**}Singlet.

cis-2-Acylimino-3-methyl-4,6,7,8-tetrahydrothieno[3,4-d]thiazole 5,5-Dioxide (VIa). A 1.24-g (0.01 mole) sample of crystalline sodium acetate and 0.94 ml (0.01 mole) of acetic anhydride were added with vigorous stirring at 60-70°C to a solution of 2.87 g (0.01 mole) of hydrobromide Va in 50 ml of water, and the mixture was stirred at this temperature for 2 h. It was then cooled to 5°C, and the resulting precipitate was removed by filtration and recrystallized. The yield was 2.00 g.

3-Substituted cis-2-Acylimino-4,6,7,8-tetrahydrothieno[3,4-d]thiazole 5,5-Dioxides (VIb-f). These compounds were similarly obtained by acylation of the corresponding hydrobromides Vb-f.

cis-2-Acylimino-4,6,7,8-tetrahydrothieno[3,4-d]thiazole 5,5-Dioxide (IIIa). A 0.94-ml (0.01 mole) sample of acetic anhydride was added with vigorous stirring at 60-70°C to a solution of 1.92 g (0.02 mole) of two-ring system IIa in 60 ml of water, after which the mixture was stirred at this temperature for 2 h and then cooled to 5°C. The precipitate was removed by filtration and crystallized. The yield was 1.71 g.

LITERATURE CITED

- 1. Yu. V. Bezuglyi, A. A. Tukhar', T. É. Bezmenova, V. P. Foremnaya, A. G. Bratunets, and A. M. Shakhvorost, Khim. Geterotsikl. Soedin., No. 1, 36 (1988).
- 2. L. C. Toldi, Khim. Geterotsikl. Soedin., No. 7, 878 (1978).
- 3. M. P. Viallet, A. Bonchere, and Cl. Cohen-Addad, Eur. J. Med. Chem., No. 6, 553 (1979).
- 4. G. I. Khaskin, Yu. V. Bezuglyi, A. B. Rozhenko, A. A. Tukhar', and T. É. Bezmenova, in: Summaries of Papers Presented at the 16th All-Union Conference on the Chemistry and Technology of Organic Compounds of Sulfur and Sulfurous Petroleum Oils [in Russian], Riga (1984). p. 218.
- 5. R. Lett and A Marguet, Tetrahedron, 30, 3367 (1974).
- 6. T. E. Bezmenova, P. G. Dul'nev, G. I. Khaskin, L. N. Zakharov, V. I. Slutskii, V. I. Kulishov, and Yu. T. Struchkov, Khim. Geterotsikl. Soedin., No. 7, 907 (1981).
- 7. Z. I. Tyukhteneva, L. A. Badovskaya, I. N. Kozlovskaya, and G. F. Muzychenko, Khim. Geterotsikl. Soedin., No. 12, 1629 (1985).
- 8. E. B. Usova, G. D. Krapivin, and V. G. Kul'nevich, Khim. Geterotsikl. Soedin., No. 10, 1337 (1985).
- 9. S. M. Ramsh, Yu. G. Basova, A. I. Ginak, N. A. Smorygo, and A. A. Rodin, Khim. Geterotsikl. Soedin., No. 1, 30 (1982).